Intrinsic and contextual features in object recognition.
نویسندگان
چکیده
The context in which an object is found can facilitate its recognition. Yet, it is not known how effective this contextual information is relative to the object's intrinsic visual features, such as color and shape. To address this, we performed four experiments using rendered scenes with novel objects. In each experiment, participants first performed a visual search task, searching for a uniquely shaped target object whose color and location within the scene was experimentally manipulated. We then tested participants' tendency to use their knowledge of the location and color information in an identification task when the objects' images were degraded due to blurring, thus eliminating the shape information. In Experiment 1, we found that, in the absence of any diagnostic intrinsic features, participants identified objects based purely on their locations within the scene. In Experiment 2, we found that participants combined an intrinsic feature, color, with contextual location in order to uniquely specify an object. In Experiment 3, we found that when an object's color and location information were in conflict, participants identified the object using both sources of information equally. Finally, in Experiment 4, we found that participants used whichever source of information-either color or location-was more statistically reliable in order to identify the target object. Overall, these experiments show that the context in which objects are found can play as important a role as intrinsic features in identifying the objects.
منابع مشابه
Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملColor and context: an ERP study on intrinsic and extrinsic feature binding in episodic memory.
Episodic memory for intrinsic item and extrinsic context information is postulated to rely on two distinct types of representation: object and episodic tokens. These provide the basis for familiarity and recollection, respectively. Electrophysiological indices of these processes (ERP old-new effects) were used together with behavioral data to test these assumptions. We manipulated an intrinsic ...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملObject Detection and Contextual Priming
Motivation: There is general consensus that context can be a rich source of information about an object’s identity, location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object. There is increasing evidence of an early use of contextual information in human perception. However, object-centered approa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2015